-45=-16t^2+34

Simple and best practice solution for -45=-16t^2+34 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -45=-16t^2+34 equation:



-45=-16t^2+34
We move all terms to the left:
-45-(-16t^2+34)=0
We get rid of parentheses
16t^2-34-45=0
We add all the numbers together, and all the variables
16t^2-79=0
a = 16; b = 0; c = -79;
Δ = b2-4ac
Δ = 02-4·16·(-79)
Δ = 5056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5056}=\sqrt{64*79}=\sqrt{64}*\sqrt{79}=8\sqrt{79}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{79}}{2*16}=\frac{0-8\sqrt{79}}{32} =-\frac{8\sqrt{79}}{32} =-\frac{\sqrt{79}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{79}}{2*16}=\frac{0+8\sqrt{79}}{32} =\frac{8\sqrt{79}}{32} =\frac{\sqrt{79}}{4} $

See similar equations:

| (4x-9)/(x-1)=2/2x-2 | | -3(6x-8)+6=-18x+30 | | (4x-9)/(2x-4)=1/2 | | X+0.25x=16 | | (x+4)/(2x-1)=0 | | 7.9=14a+20 | | 16b+b^2=132 | | 14a=12.1 | | 13x+2=3x-4+5x-7 | | 8.9/12=3/n | | 2. 13b-9=3b+4 | | (5x+6)-(5-4x)=-10 | | Y=x2+3x-6x3-8 | | 2n+3n+4n=36* | | x4+x3+4x2+4x=0 | | 16/12=20/y | | x=100*(1.22)^ | | 6/6y=50/90 | | y=100*(1.22)^ | | 3x-15=99 | | 24/10y=54/130 | | 9q2−24q+16=0 | | 2n/3n=15 | | 3+x+5=2x+5 | | 7a-3=3(a+9)+4a | | 2x-2+2x-10=12 | | 4y-3=2y | | Y=4x2+3x+2 | | n/52=180/120= | | 0.3+x/2=0.15x+2 | | F(-3)=6/x-3 | | x-7.8=2.5 |

Equations solver categories